Computing Vertex PI Index of Tetrathiafulvalene Dendrimers
author
Abstract:
General formulas are obtained for the vertex Padmakar-Ivan index (PIv) of tetrathiafulvalene (TTF) dendrimer, whereby TTF units we are employed as branching centers. The PIv index is a Wiener-Szeged-like index developed very recently. This topological index is defined as the summation of all sums of nu(e) and nv(e), over all edges of connected graph G.
similar resources
computing vertex pi index of tetrathiafulvalene dendrimers
general formulas are obtained for the vertex padmakar-ivan index (piv) of tetrathiafulvalene(ttf) dendrimer, whereby ttf units we are employed as branching centers. the piv index isa wiener-szeged-like index developed very recently. this topological index is defined as thesummation of all sums of nu(e) and nv(e), over all edges of connected graph g.
full textVertex-PI Index of Some Nanotubes
The vertex version of PI index is a molecular structure descriptor which is similar to vertex version of Szeged index. In this paper, we compute the vertex-PI index of TUC4C8(S), TUC4C8(R) and HAC5C7[r, p].
full textComputing Vertex PI, Omega and Sadhana Polynomials of F12(2n+1) Fullerenes
The topological index of a graph G is a numeric quantity related to G which is invariant under automorphisms of G. The vertex PI polynomial is defined as PIv (G) euv nu (e) nv (e). Then Omega polynomial (G,x) for counting qoc strips in G is defined as (G,x) = cm(G,c)xc with m(G,c) being the number of strips of length c. In this paper, a new infinite class of fullerenes is constructed. ...
full textThe vertex PI index and Szeged index of bridge graphs
Recently the vertex Padmakar–Ivan (PI v) index of a graph G was introduced as the sum over all edges e = uv of G of the number of vertices which are not equidistant to the vertices u and v. In this paper the vertex PI index and Szeged index of bridge graphs are determined. Using these formulas, the vertex PI indices and Szeged indices of several graphs are computed.
full textFourth order and fourth sum connectivity indices of tetrathiafulvalene dendrimers
The m-order connectivity index (G) m of a graph G is 1 2 1 1 2 1 ... ... 1 ( ) i i im m v v v i i i m d d d G where 1 2 1 ... i i im d d d runs over all paths of length m in G and i d denotes the degree of vertex i v . Also, 1 2 1 1 2 1 ... ... 1 ( ) i i im m v v v i i i ms d d d X G is its m-sum connectivity index. A dendrimer is an artificially manufactured or synth...
full textcomputing vertex pi, omega and sadhana polynomials of f12(2n+1) fullerenes
the topological index of a graph g is a numeric quantity related to g which is invariant underautomorphisms of g. the vertex pi polynomial is defined as piv (g) euv nu (e) nv (e).then omega polynomial (g,x) for counting qoc strips in g is defined as (g,x) =cm(g,c)xc with m(g,c) being the number of strips of length c. in this paper, a new infiniteclass of fullerenes is constructed. the ...
full textMy Resources
Journal title
volume 1 issue Issue 1 (Special Issue on the Role of PI Index in Nanotechnology)
pages 125- 130
publication date 2010-04-01
By following a journal you will be notified via email when a new issue of this journal is published.
Keywords
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023